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Abstract – We describe the design, fabrication, and testing of a superconducting passive
nonlinear reference device that has a calculable phase relationship between the
fundamental RF drive signal and resulting higher order harmonic components.  We show
this passive device to be a useful standard for verifying the phase calibration of nonlinear
vector network analyzers, as the magnitude and phase of the third order product are found
directly from independent measurements of the field-dependent surface reactance.
Microwave power-dependent measurements of coplanar waveguide (CPW) resonators
fabricated from thin film high-Tc superconductor materials yield the transmission line
resistance and inductance per unit length as a function of rf current. With these values and
the line geometry we computed both the nonlinear surface impedance of the material and
the phase and magnitude of the third order product of a traveling wave in a quasi-linear
transmission line.  To demonstrate our CPW reference device, we measured both the
magnitude and the phase of third-harmonic components generated in a number of 133 mm
long meander transmission lines using a commercial nonlinear vector network analyzer.
We demonstrate agreement to within 10 degrees between the measured and the predicted
phase for third harmonic signals relative to the fundamental.

I.  Introduction

An important step in enhancing large-signal microwave frequency measurements and
developing efficient modeling strategies is the identification of a reference device with a large-
signal response that can be predicted from underlying physical principles.  Such a device could
then be applied as a phase standard to confirm and improve large-signal device measurements,
and could also be applied as standard device-under-test (DUT) in the development and
verification of new nonlinear network modeling and measurement methods.  We report on the
design and fabrication of such a standard device using the intrinsic nonlinearity present in high
transition temperature (high Tc) superconductor thin-film materials.  By using on-wafer
measurements of multiple patterned devices, we were able to characterize both the linear and the
nonlinear response of the superconducting thin film devices under study, which allowed us to
calculate both the magnitude and phase of the nonlinear harmonics generated by a
superconducting transmission line.

A generic two-port nonlinear device can be represented by the signal flow diagram
shown in Fig. 1, where ai and bi are complex wave variables for port i, representing incident and
reflected waves at a particular reference plane.  Commercial nonlinear vector network analyzers
operate by measuring the a and b wave variables at each port at the frequency of the fundamental
signal, as well as at a finite number of harmonically-related frequencies.  One can then describe
the response of a general nonlinear device by specifying the wave variable vectors ai,k and bi,k,
where the subscript i refers to the port number, and the subscript k refers to the order of the
frequency harmonic.  In order to get the correct relationship between the harmonic and
fundamental components of our wave variable vectors, we need a phase dispersion calibration to
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preserve relationships between the wave variable components, like b2k/a11.  Existing phase
dispersion calibrations for nonlinear vector network analyzers are based on measurements of a
harmonic phase transfer standard linked to the Nose-to-Nose oscilloscope calibration [1].  The
goal of this work is to supplement such existing calibration techniques by developing a simple
nonlinear reference device that has a nonlinear response (both magnitude and phase) that can be
directly calculated based on independent measurements of the relevant nonlinear parameters,
along with some simple physical models.

In what follows, we introduce the concept of a quasi-linear transmission line as a
candidate nonlinear reference device.  We proceed to describe the physical basis of the nonlinear
surface impedance in superconductors using the concept of a current-density-dependent complex
conductivity.  We show how such an intrinsic material nonlinearity can be characterized by
determining the resistance and inductance per unit length in planar resonators and transmission
lines, and we experimentally estimate the fundamental nonlinear parameters of the complex
surface impedance from rf power-dependent measurements of patterned resonators.  Using these
measured parameters, we then calculate the magnitude and phase of the third-order nonlinear
harmonic component generated by superconducting planar transmission lines of the same cross-
sectional geometry as the resonators. By comparing the predicted phase results with
measurements made using a commercial nonlinear vector network analyzer, we then demonstrate
the application of our nonlinear reference device for verifying the calibration of nonlinear
network measurement systems.

II. Quasi-Linear Transmission Line Model

Our candidate nonlinear reference device is a weakly nonlinear transmission line, which
generates nonlinear products due to a current-dependent resistance and inductance per unit
length.  The use of such a passive component to generate nonlinear harmonics has several
advantages.  If we can assume that the nonlinear response is weak, then we can de-couple the
transmission properties of such a device from the nonlinear harmonic generation.  In this case we
can determine the drive signal on a given transmission line element by solving the linear
transmission line equations.  After calculating the harmonic components generated by the
nonlinear element subjected to this known drive signal, we can then assume that their
propagation down the transmission line is again governed solely by the linear transmission line
properties.  If we make the further assumption that such a transmission line is perfectly matched
at the source and load, then we can simplify the problem enough to determine a solution.

Figure 2 shows an equivalent circuit model of such a quasi-linear transmission line.  In
this model, the resistance and inductance per unit length are composed of linear and nonlinear
terms:  R(i) = R0 + DR(i), L(i) = L0 + DL(i), while the capacitance and admittance per unit length
are assumed to be linear.  In practice the nonlinear contributions to the resistance and inductance
per unit length arise due to the internal contributions to the resistance and inductance of the
transmission line conductors.  Our requirement for a weakly nonlinear system then translates into
the condition that DR(i) << R0 and DL(i) << L0 for the current levels over which the device is
operated.

b1,k

a1,k Nonlinear
DUT

a2,k

b2,k

Fig. 1.  Schematic representation of a two-port nonlinear device-under-test.  The subscript k refers to the harmonic
frequency component of the wave variable vector.
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In addition to the assumptions enumerated above, we make a number of additional
simplifying assumptions.  We assume that the transmission line capacitance per unit length is not
only linear, but is also constant as a function of frequency C0(w) = C0, and that the conductance
is zero (G0 = 0).  We will also assume that the total resistance per unit length is much smaller
than the total inductive reactance per unit length, which is almost always satisfied for
superconducting transmission lines.  With these assumptions it is clear that the propagation of a
waveform down our transmission line is governed to good approximation by the linear terms R0,
L0, and C0.  We determine the linear propagation constant through multi-line TRL
calibrations[2], and we then determine the characteristic impedance from the multi-line
propagation constant along with our model of C0, without any contribution from the nonlinear
elements.  Knowledge of the linear transmission line parameters allows us to calculate the drive
signal on a given nonlinear transmission line element.  This analysis is combined with simple
approximations for the nonlinear functions R(i), L(i), to calculate the nonlinear voltage or current
components, which then propagate down the transmission line according to the linear
propagation characteristics.

We determine the nonlinear voltage due to a drive current i on an incremental length of
transmission line from the following expression:

† 

-
∂vnl

∂z
=

∂ DL i( )i[ ]
∂t

+ DR i( )i . (1)

Note the minus sign in Eq. (1), which occurs due to the fact that all measured quantities are
determined across the transmission line terminals illustrated in Fig. 2.  The nonlinear functions
DR(i) and DL(i) are assumed to be quadratic functions of current:  DL(i) = L'i2, DR(i) = R'i2.
Substituting these forms into Eq. (1) gives
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Using phasor notation, we obtain for the voltage at the frequency of the third harmonic
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Fig. 2.  Equivalent circuit for a quasi-linear transmission line.
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where I0 is the coefficient of the amplitude of the signal at the fundamental frequency.  If we
assume that the length l of the transmission line is less than a wavelength, then we obtain for the
third harmonic voltage due to a length l of quasi-linear transmission line

  

† 

V3w =
- I0

3l

8
¢ R + j3w ¢ L ( ) . (4)

From this expression, it is straightforward to calculate both the power and phase of the signal
delivered at the third harmonic frequency:

  
P3w =

l2

16 Z0
4 3w ¢ L ( )2

+ ¢ R ( )2[ ]⋅Pw
3 , (5)

tan –i3( ) =
-3w ¢ L 

- ¢ R 
, (6)

where Pw is the power in the fundamental signal.  The form for the third-harmonic voltage in Eq.
(4) agrees with a more rigorous derivation based on solving the nonlinear transmission line
equations given in ref. [3], which allows Eq. (4) to be applied to transmission lines of arbitrary
length.

So if we are able to realize such a weakly nonlinear transmission line, and can determine
the necessary nonlinear coefficients (L' and R' in Eqs. (5) and (6)) with sufficient accuracy, then
we can calculate the magnitude and phase that we expect for the generated third harmonic signal.
Nonlinear vector network analyzer measurements of the phase of the transmitted third harmonic
component b23 relative to the phase of the cube of the transmitted fundamental signal b21

3 can
then be directly compared to the calculated phase described above.  Recent experiments have
shown that high Tc superconductor materials possess a weak intrinsic nonlinearity[4].  Our
approach to developing a nonlinear reference device is therefore to design and characterize
transmission lines fabricated from high Tc superconductor thin films.  Such superconducting
transmission lines satisfy all of the necessary conditions for the weakly nonlinear transmission
line model described above.  In what follows we describe the physical origins of the intrinsic
nonlinearity in superconducting materials, and show how the estimates of the nonlinear
parameters R' and L' can be obtained experimentally for planar superconducting transmission
lines.

III.  Physical Basis of the Nonlinear Response in Superconductors

A number of different superconductors with critical temperature above the boiling point
of liquid nitrogen (77K) have been discovered since 1986[5].  Of the known high Tc
superconductors, the most studied material is YBa2Cu3O7-d (YBCO), with a Tc of 90 K. The
ability to fabricate high-quality thin films of this material and pattern micron-size structures have
led to a number of planar microwave transmission line and device structures that we can take
advantage of in a reference device.

Superconducting materials differ from their normal-conducting counterparts in a number
of significant ways.  Superconductors possess their unique properties (zero dc resistance, perfect
diamagnetism) due to the fact that below a certain temperature, interactions between electrons
can become attractive, leading to the formation of electron pairs (Cooper pairs). These paired
charge carriers then obey Bose-Einstein statistics and can condense into a single quantum
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mechanical ground state at low energies.  The superconducting state can be destroyed by raising
the energy of the ground state beyond a critical value.  This energy limit on the superconducting
state implies that superconductivity in a given material cannot exist above a critical temperature
(Tc), critical magnetic field (Hc), and critical current density (Jc).  The values of the critical
parameters differ substantially over the range of known superconducting materials.

To describe the electrodynamics of superconducting materials at conditions below the
critical points, one often writes the material conductivity as a complex quantity:

s * = s1 - js 2 = sn
nn
n

Ê 
Ë 
Á 

ˆ 
¯ 
˜ - j 1

m0 w l2
Ê 

Ë 
Á 
Á 

ˆ 

¯ 
˜ 
˜ , (7)

where n is the total density of conduction electrons, nn is the density of unpaired electrons, sn is
the conductivity in the normal state, w is the angular frequency, and l is the superconducting
penetration depth[6].  The quantity l2 can be related to the density of superconducting charge
carriers.  For most superconductors at temperatures well below Tc, nn<<n and the imaginary
component of the conductivity usually dominates:  s2 >> s 1.  This means that the surface
resistance Rs ≈ Re{(jwm0/s*)1/2} for a superconductor calculated using s* from Eq. (7) can be
much less than that of normal metals for frequencies up to 100 GHz .  In addition, Eq. (7) implies
that the superconductor has a much larger reactive component of the complex surface impedance
compared to normal metals, and one that is not equal to the surface loss as in normal metals.

As the current density in the superconductor increases toward the critical current density
Jc, a small fraction of paired superconducting charge carriers are broken due to the increasing
(kinetic) energy in the system and nn/n increases.  At current densities well below Jc, one can
describe this effect as a superconducting penetration depth that increases quadratically with
increasing current density J:
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where l0(T) is the penetration depth in the limit of zero current density and J2 is a current density
scale that may be related to the critical current density Jc.  Physically this describes the pair-
breaking effect on the superconducting penetration depth and intrinsic surface reactance.  The
form for l(J) given by Eq. (8) has been confirmed experimentally for films of the high-
temperature superconductor YBCO by mutual inductance measurements[7].  Such experiments
probe small changes in the penetration depth determined by mutual inductance techniques in the
presence of a dc current density, and can be used to determine the current density scale J2 in Eq.
(8).

Note that in general there may also be a nonlinear component arising from the s1 term in
Eq. (7), which we model phenomenologically as[8]
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where s10 is the limit for the normal fluid conductivity at zero current density, and J1 is an
additional current density scale.  The origin of this nonlinear conductivity is not clear, but could
be due to nonlinear effects in superconductors other than pair-breaking (for example, the motion
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of magnetic vortices), or could be due to extrinsic effects, such as superconductor weak links or
intrinsic Josephson junctions at grain boundaries.

IV.  Relating Nonlinear Material Parameters and Transmission Line Parameters

In order to determine the effects of the current-density-dependent material quantities
s1(J) and l(J) on superconducting planar transmission lines, we need to calculate the resistance
and inductance per unit length due to the nonlinear l(J) and s1(J) for a specific planar geometry.
We calculate the resistance and inductance per unit length for coplanar waveguide transmission
lines from the following expression:

R =

s1
s 2

2 J 2
Ê 

Ë 
Á 
Á 

ˆ 

¯ 
˜ 
˜ dSÚ

J dSÚ( )2 ; L =
m0 H2 +l2 J2( )dSÚ

J dSÚ( )2 , (10)

where H is the magnetic field, and the integration is carried out over the cross-sectional area of
the transmission line.  Substituting the expressions for l(J) and s1(J) from Eqs. (8) and (9), we
obtain the following results for the nonlinear resistance and inductance per unit length:

R i( ) = R0 + ¢ R i2 ; ¢ R = s1 0m0
2w 2 l0

4 1
J1

2 +
2
J2

2

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ ¢ G 

L i( ) = L0 + ¢ L i2 ; ¢ L =
m0 l0

2

J2
2 ¢ G 

, (11)

where R0 and L0 are the linear contributions to the inductance and resistance per unit length,
respectively. The factor G' is a geometrical factor given by

¢ G =
J4 dSÚ
J dSÚ( )

4 . (12)

The integration in Eq. (12) is carried out over the cross-section of the planar transmission line
under test.

We can now clearly see the effect of the current-dependent normal-fluid conductivity
s1(J) and penetration depth l(J) on a superconducting planar transmission line:  the resulting
inductance and resistance per unit length depend on the rf current flowing in the transmission
line.  This current-dependent inductance and resistance per unit length give rise to familiar
nonlinear effects in superconducting transmission lines such as harmonic generation and
intermodulation distortion.  If we can obtain values for R' and L' for our superconducting
coplanar waveguide transmission lines (either calculated from Eq. (11) or determined
experimentally), then we can calculate the nonlinear effects that we expect based on the quasi-
linear transmission line model presented above.

In order to determine R' and L', we can determine all the material parameters in Eq. (11),
or try to directly measure R(i) and L(i) experimentally.  By performing on-wafer measurements
of calibration artifacts and resonators patterned onto our superconducting thin film samples, we
can determine most of the material parameters in Eq. (11) with reasonable accuracy.  The
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exceptions are the current-density scales J1 and J2.  However, we can obtain an estimate for J2 (as
well as l) from mutual inductance measurements as mentioned previously[7], which allows us to
calculate a value for L'.  If we assume that for planar superconducting elements wL' >> R', we
can calculate the magnitude of nonlinear effects such as harmonic generation and
intermodulation distortion for superconducting planar devices.  This has been demonstrated
recently for YBCO films at 76 K, where the magnitude of third harmonic signals in CPW
transmission lines has been successfully predicted based on mutual inductance measurements of
the material parameters l and J2 on unpatterned companion samples[9],[10].

It is also possible to determine the parameters L' and R' directly by measuring the
response of patterned resonators at increased rf power levels[11].  In addition to the CPW
transmission lines, we fabricated CPW resonators of the same cross-sectional geometry in the
same high Tc thin film sample, in order to obtain the nonlinear contribution to both the
inductance and resistance per unit length (L' and R').  Measurements were made in a cryogenic
microwave probe station that allows for full multi-line through-reflect-line (TRL) calibrations[2]
to be performed at a fixed cryogenic temperature.  The rf-power-dependent resonator
measurements combined with the multi-line TRL calibrations enabled the current-dependent
resistance and inductance per unit length to be calculated [11].  Microwave power-dependent
data are shown in Fig. 1 for a CPW resonator at a fundamental frequency of 3.3 GHz and a
temperature of 76 K, where the current-dependent resistance and inductance per unit length are
given by R(i) = R0 + ∆R(i) and L(i) = L0 + ∆L(i), respectively.  We fit the measured ∆R(i) and
∆L(i) data to a quadratic function:  DR(i) = R'i2 , and wDL(i) = wL'i2, and extract the coefficient
of the i2 term for both sets of data.  For the data shown in Fig. 1, we obtained wL' = 47,775
W/A2m and R' = 16,189 W/A2m at 3.3 GHz.  It should be noted that the values of wL and R'
obtained from such fits are sensitive to the range of data included in the quadratic fit.  As will be
discussed later, however, such variations in the nonlinear fitting parameters give rise to at most a
10 degree variation in the calculated phase. The values obtained for L' show good agreement
with the calculations of L' based on mutual inductance measurements for similar thin film
samples[12].  The values of L' and R' extracted from these experiments are used in the simple
model of a weakly nonlinear transmission line presented earlier to predict both the magnitude
and phase of the third harmonic signal when the transmission line is impedance matched to both
port connections.

V. Design and Fabrication of Reference Device

A relatively simple nonlinear reference device is therefore a superconducting
transmission line.  It is broadband, and the nonlinear inductance can be in principle calculated
based on mutual inductance measurements of the nonlinear penetration depth, or determined
along with the nonlinear resistance from power-dependent resonator measurements  One
significant disadvantage of using a weakly nonlinear device for a nonlinear reference standard is
the difficulty in achieving adequate signal-to-noise ratio for the measured harmonic signals.
While the fact that our device is weakly nonlinear enables considerable simplification of the
preceding analysis, it also means that the generated nonlinear signal is in general much smaller
than the fundamental.  By examining Eq. (11) for the nonlinear parameters L' and R', we
determine that by decreasing the cross-sectional area of our transmission line, we can increase
the magnitudes of L' and R', thereby increasing the magnitude of the generated harmonic signal
(see Eq. (5)).  We also determined from Eq. (5) that increasing the length of our transmission line
will increase the magnitude of our generated harmonic signal proportionally.  Our initial
nonlinear reference device designs therefore consisted of CPW transmission lines with a center
conductor linewidth of 22 or 11 mm patterned from 60"nm thin films of the high temperature
superconductor YBCO grown on 16 x 16 mm2 LaAlO3 substrates.  In order to maximize the
overall length, a meander-line geometry is implemented for the CPW transmission lines,
resulting in a transmission line length of 133 mm.
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VI.  Comparison of Nonlinear Superconducting Transmission Lines to Nonlinear Vector
Network Analyzer Measurements

Once the high Tc superconductor devices have been fabricated and their nonlinear
response evaluated with the power-dependent resonator measurements, we further characterized
their nonlinear responses using a nonlinear vector network analyzer (NVNA) with the existing
phase calibration techniques (harmonic phase transfer standard linked to the Nose-to-Nose
calibration)[1].  We then compared both the magnitude and phase of the measured nonlinear
harmonic response with predictions (Eqs (5) and (6)) based on the nonlinear parameters
extracted from the power-dependent resonator measurements.  Figures 2 and 3 show such a
comparison, where measurements of the magnitude and phase of the transmitted third harmonic
signal b23 are compared with predictions based on the power-dependent resonator fits described
above.  For the phase data, we plot the phase difference between the third harmonic and the
fundamental ∆f3w, defined as ∆f3w = f 3w – 3fw, where 3w and w are the frequencies of the
fundamental and third harmonic signal respectively.  Several features of the measurement data
are worth noting.  For low incident powers, there is considerable scatter in the measured
magnitude and phase data.  This is a direct consequence of the low signal-to-noise ratio caused
by the small third harmonic signal levels (magnitude < -65 dBm, see Fig. 2), and the relatively
small dynamic range of the NVNA compared to a spectrum analyzer.  Also, there is a small but
noticeable decrease in the measured phase at the highest incident powers.  This is likely due to
the increase in DR(i) that occurs at higher powers, which is clearly evident in Fig. 1.  In addition,
as mentioned previously, the values of the nonlinear parameters L' and R' vary depending on the
details of the fitting process.  This limits the accuracy of our calculation of the phase to a range
of about 10 degrees.  Another source of error in the experimental determination of the nonlinear
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phase relationships are impedance mismatch effects at both device ports, which limit our
knowledge of the fundamental drive signal incident on our nonlinear transmission line elements.
With these considerations, we can conclude from Fig. 3 that our nonlinear reference device
confirms the existing phase calibration of our nonlinear vector network analyzer to within
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approximately +/- 5 degrees, and is limited by the accuracy with which we are able to determine
the nonlinear parameters of the high Tc superconductor material.

In addition to the measurements described here, we have further evaluated our
superconducting nonlinear reference device by measuring its response using NVNA
measurements at different frequencies and device temperatures, and we have also evaluated a
number of different superconducting devices.  These measurements give consistent results for
the magnitude and phase of the third harmonic, for third harmonic frequencies up to 18 GHz.
Results for three different superconducting devices evaluated at 76 K and approximately 4 GHz
are summarized in Table I below.

Table I.  Summary of measured and calculated values for the third harmonic phase relative to the fundamental.  The
range of values presented for range f3w

pred. represent the range of predicted values based on different fit conditions
for determining R' and L'.

Sample f3w
meas (deg.) Std. Dev. f3w

meas (deg.) f3w
pred (deg.) range f3w

pred (deg.)
L302-144@76K

22 mm center
259.8 6.3 262.2 260-270

L303-048@76K
22 mm center

265.3 2.1 270 259-270

L303-049@76K
11 mm center

268.2 4.3 270 264-270

V.  Conclusions

We have demonstrated the design and characterization of a high Tc superconducting
transmission line for use as a passive nonlinear phase reference device.  This device exploits the
weak intrinsic nonlinearity present in high Tc superconductors, which can be characterized by
independent measurements, to produce a nonlinear harmonic signal with a calculable phase
relationship to the fundamental signal.  Detailed nonlinear vector network analyzer
measurements of this reference device have confirmed the accuracy of the existing phase
calibration to within +/- 5 degrees at 4 GHz, and demonstrate the utility of a phase reference
device for verifying nonlinear phase calibrations.  For the experiments presented here, the
accuracy of the phase determination was limited by measurements of the nonlinear parameters of
the high Tc superconducting material.  Improved accuracy could be obtained by increasing the
effective transmission line length in order to increase the magnitude of the generated harmonic
signal(s), so that the device could be operated at lower temperatures where the relative size of the
nonlinear resistance may be smaller.  Further experiments are planned to investigate the
frequency dependence of these superconducting nonlinear reference devices up to 50 GHz, in
order to determine if sufficient accuracy can be obtained to warrant use as a primary or
secondary phase calibration standard for nonlinear vector network analyzers.
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